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Cardiac arrest (CA) is an abrupt cessation of myocardial function which affects more than half a million people in 
the United States annually. An estimated 80% of patients are unconscious after resuscitation from CA, and these 
patients can experience a wide range of outcomes, from complete recovery to death or severe neurologic 
disability.1 A major challenge in post-CA care is to accurately predict outcome, especially in the early phase when 
patients are treated in the intensive care unit (ICU). Physical examination findings and neurophysiological tests 
lack prognostic accuracy, especially in the early phase of care.2 The recommended paradigm of multi-modality 
prognostication to be implemented >72 hours after CA can be a challenge to implement, and the predictive 
performance of its different elements, while studied individually, are unknown in aggregate.3 
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Here, we propose a novel approach for post-CA clinical outcome prediction, based on two hypotheses. First, that 
variables derived from early (first 24h in ICU) physiologic time series (PTS) signals widely available at the 
bedside contain discriminative information and contribute to prognostic model performance; and second, that a 
combination of electronic health record (EHR) clinical and derived PTS variables will yield the best short-term 
prognostic capabilities for post-CA data-driven prognostication. Three short-term hospital discharge endpoints 
were evaluated and modeled: 1. in-hospital mortality, 2. neurological outcome based on dichotomized motor 
Glasgow Coma score, and 3. post-hospital discharge location. Hypotheses were tested using data from the 
multicenter Philips eICU-CRD database,4 and externally validated on Medical Information Mart for Intensive Care 
(MIMIC) III database.5 

Machine learning models were created to predict hospital discharge endpoints within 24 hours of ICU admission. 
We evaluated four different statistical and machine learning methods: 1. generalized linear model (glm), random 
forest (rf), XGBoost (xg), and neural networks (nn). EHR and PTS derived features were evaluated separately 
and together to assess the added predictive capabilities of PTS derived features. The principal outcomes were 
survival and neurological function recorded at the time near discharge from the hospital (longer term outcomes 
are not available in eICU). The neurological outcome indicator widely used in the CA population is the Cerebral 
Performance Category (CPC) score,6 however, CPC was not recorded in eICU or MIMIC III. Therefore, to best 
account for this limitation, we defined two surrogate outcomes, one based on the motor subscore of the Glasgow 
Coma Score (mGCS) at discharge, dichotomized as follows: mGCS of 6 (favorable outcome), mGCS ≤5 
(unfavorable outcome) and the second based on hospital discharge location (DL), dichotomized as follows: 
discharge location of home and rehabilitation (favorable outcome), other location (unfavorable outcome). 
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AUROC Sensitivity Specificity

In-hospital Survival 
Outcome

eICU model 
development

0.83 (0.84, 0.82) 0.79 (0.81, 0.77) 0.71 (0.73, 0.70)

MIMIC III External 
Validation

0.76 (0.77, 0.75) 0.79 (0.82, 0.76) 0.59 (0.61, 0.56)

Neurological Outcome 
(motor GCS surrogate)

eICU model 
development

0.87 (0.88, 0.86) 0.81 (0.82, 0.79) 0.76 (0.78, 0.75)

MIMIC III External 
Validation

0.84 (0.85, 0.83) 0.92 (0.93, 0.90) 0.58 (0.60, 0.56)

Dichotomized Discharge 
Location 

eICU model 
development

0.80 (0.81, 0.79) 0.70 (0.73, 0.68) 0.75 (0.76, 0.73)

MIMIC III External 
Validation

0.76 (0.76, 0.75) 0.75 (0.77, 0.72) 0.59 (0.61, 0.56)

Figure 2. Supervised machine learning pipeline showing the 
nested cross validation implementation in which the inner loop is 
used for hyperparameter tuning and the outer loop is used to 
evaluate the generalized model performance.

Figure 1. Study inclusion and exclusion criteria identifying the 
2,216 eICU post-CA cohort. 86 MIMIC III post-CA cohort were 
identified following the same criteria. 

Table 1. Demographic Summary of the Post-Cardiac arrest population 
in the eICU-CRD and MIMIC-III database. 

Figure 4. ROC curves of glm, nn, rf, and xg boost models utilizing both EHR and PTS derived features to predict 
Mortality (left), Neurological outcome (middle) and Discharge location (right).

Table 2. Performance metric summary of the eICU-CRD developed model and MIMIC III external validation for 
each evaluated clinical endpoint. Results show a loss of performance during external validation but that may be 
due to the limited samples that met our inclusion and exclusion criteria (86 samples). 

Figure 3. ROC curves for each clinical endpoint [Mortality (left), Neurological outcome (middle) and Discharge 
location (right)] evaluating the model performance differences between three different feature spaces: 1. EHR and 
PTS derived features, 2. EHR derived features only, and 3. Our findings show that not only do PTS derived features 
alone provide almost as much information as EHR derived features, but also there is an additive performance 
improvement when PTS and EHR derived features are combined. 

Table 1 provides the demographic summary of the eICU 
and MIMIC-III post-CA cohorts. As our model required 
stringent data availability to assess the efficacy of 
incorporating high frequency time series physiologic 
signal (PTS) features, our external validation post-CA 
population was reduced to 86 ICU admissions. Figures 3 
demonstrates that the incorporation of PTS derived 
features  increased predictive performance and the PTS 
derived features alone may provide significant 
information that have previously been overlooked, both 
in other models and in the clinical setting. 
Figure 4 shows model performances across different 
clinical endpoints for each of our four evaluated 
statistical and machine learning algorithms. Table 2 
shows the MIMIC-III external validation results on our 
best performing eICU post-CA prognostication models. 
The degree of external validation performance reduction 
varied between 3 - 7% AUROC and suggested overall 
good generalizability.

Figure 5. Categorized random forest feature ranking for our in-hospital survival prediction model. Each dot represents an individual 
feature, and is grouped into feature categories. A relative importance of 1.00 signifies the most important feature. The top 20 features 
are labeled and for the sake of simplicity, PTS derived features are identified by numbers. 

The feature rankings for our in-hospital survival endpoint are shown in Figure 5. It shows the relative importance 
based on the average minimum random forest tree depth. The more a feature contributes to the prediction, the 
higher the relative importance. Overall, rankings for each endpoint show that majority of the top 50 features 
across all clinical outcomes were PTS derived features. Each models’ features were pruned and selected from a 
list of 19,691 features collected across all five PTS signal types (heart rate, SpO2, respiratory rate, diastolic, and 
systolic blood pressure) from the first 24 hours of ICU admissions.  


